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Abstract. The induced oscillations of small particles in a massless classical field (acoustic, 
electromagnetic etc) result in the appearance of the time-averaged long-range radiative 
forces. These forces are proportional to the square of the field amplitude and inversely 
proportional to the distance between the particles. The radiative forces predominate at 
large distances. Their structure is universal for arbitrary classical fields. 

1. Introduction 

Recently it was found that liquid compressibility leads to the appearance of two types 
of long-range radiative forces between small particles (gas bubbles and solid corpuscles) 
oscillating in a sound field [l-31. One type is the mutual attraction or repulsion of 
particles for which the forces are directed along 1, where I = rz - r ,  , r,,? being the 
position vectors of particle centres. The second type is the transfer and the mutual 
rotation of the particles for which the forces are directed along k, where k is a 
wavevector. Both these types of time-averaged forces are proportional to the square 
of the sound wave amplitude and inversely proportional to the distance between the 
particles. The relative motion of two particles under the action of the long-range 
radiative forces and short-range Bjerknes forces was investigated in [4]. 

It is interesting to transfer the corresponding results to the problem of the radiative 
long-range interaction between two small particles due to an arbitrary classical field. 
It is shown in this paper that the induced dipole oscillations of the charged particles 
in an electromagnetic field result in the appearance of analogous radiative forces. 
These forces are caused by secondary radiation of the charged particles; at large 
distances they may predominate over the Coulomb forces. This even leads to the 
possibility of forming bound states between two like charges. The corresponding values 
of field intensity are obtained. In this paper the radiative interaction of two non- 
relativistic particles through a scalar field is also investigated. 

Such possible interdisciplinary transfer between acoustics, electrodynamics and the 
classical theory of field is based on the formal analogy of corresponding equations. 
It is not new in physics, having already been considered in, for example, [5-71. It is 
also clear that the term particle itself does not have the same significance in fluid 
mechanics that it has in electrodynamics. Many authors have recently investigated 
extended models of electrons [8-131. In this paper the charged particles are considered 
to be the usual classical particles without internal structure. 
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2. The radiative interaction of gas bubbles in a liquid under the action of sound waves 

Let us consider the bubble monopole oscillations under the action of sound waves 
Pa, = A cos(wt - k - r ) ,  where A is the pressure amplitude and o is the cyclic frequency. 
These oscillations give rise to the scattering field 

R:AR,(  t - / r  - r,I/c) R:Ak,( t - / r  - r,l/c) (2.1) - 
c o s  = (PSI + (Ps2 = - 

Ir- rll lr-r2l 
where ( P ~ , , ~  are the delayed velocity potentials created by the first and second bubble 
respectively, are the mean radii, AR, ,2  are their shifts, r l , z  are the position vectors 
of the mean positions of the bubble centres and c is the speed of sound in the liquid. 

The time dependences of the bubble radii can be represented by the expressions 

AR, ,2  = a, , ,  cos(wt - k * rIq2 - x , , ~ ) .  (2.2) 

FI = - ~ I T R : ( A R , V  P) .  (2.3) 

The time-averaged force acting, for example, on the first bubble is given by [14]  

The resulting pressure is P = Pa, + Ps2 where PSz = -p@,, where p is the density of 
the liquid. 

It should be noted that in [ l ]  only the pressure PSz has been taken into account. 
This leads to the loss of the second type of long-range forces mentioned in section 1 .  

In order to calculate the amplitudes and phases x , , ~ ,  we used the equations of 
the radius pulsations [ 141 

Acos (wt -k - r , )  R :  
OR, R ,  1 

hRl + U ; ~ ~ ,  + u ~ , A R ,  = - -- A d , ( t - l / ~ )  
I .  

(2.4) 
Acos(wt-k- r , )  R:  

A R 2 + w ~ A R 2 + w 6 z A R 2 =  - -- AR,(t - l/c). 
PR2 Rzl 

The equations (2.4) take account of the additional delayed pressures [2 ,3] ,  1 is the 
are the absorption constants, and U , , ,  are distance between the two gas bubbles, 

the resonance frequencies of gas bubbles. 

and x , , ~ .  To first order in R1,2/1, the solution is given by 
The substitution of (2.2) into (2.4) leads to the nonlinear algebraic system for 

A R2 COS( kl+ k .  I )  
a , = a , , + a , , =  - 1+- p ~ ~ ~ R , [ ( w ~ / w ~ -  1)'+6:]1'2 

(2.5) 

A 
p w 2 R 2 [ ( ~ : / w 2 -  1),+ S ~ ] I / *  

a2 = azo+ a2,  = - 1 +- 
sin( kl+ k * I )  R z  x, = x l o + x l I  =tan- '  +- 

R I  sin( k l -  k I )  

where a,,, a20, xl0 and xzO are the corresponding values at the limit R1,2/1 + 0. 

for the radiative forces to first order in kR,.,<< 1: 
The substitution of (2.5) into (2.3) allows us to obtain the following expressions 

FI = Fi I FI k F2 = F2 I + F2k (2.6) 
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where the forces of the first type (in the direction of I )  are 

Fll = 
2nR1  R2A2 1 

p w 2 [ ( w : / w ’ -  1)2+s:]”2[(w:/w’- 1)2+8;]1’2 F 

F2r= - p w ’ [ ( w : / w ’ - 1 ) 2 + S f ] ” 2 [ ( w : / w 2 - 1 ) ’ + 6 : ] ” 2  F 

x [cos( kl+ k - I+,yz0 -xlo) + kl sin( kl+ k - 1 +,y20-,ylo)] (2.7) 
2 r R 1  R2A’ 1 

x [cos(kl- k - 1 +x20-,y10) + kl sin( kl- k I + X ~ ~ - , ~ , , , ) ]  (2.8) 
and the forces of the second type (directed along k) are 

2 r R  A’S, k 

2 r R 2  A’S2k 

2nRlR2A2k  s in(kl+k.  l+xlo)  

2 r R l R 2 A 2 k  sin(k1-k. I + X ~ ~ )  

+ (2.9) 

+ (2.10) 

p w 2 [ ( w : / w 2 -  1)’+s:] p W 2 1 [ ( W f / W 2 -  1)2+8””2[(w:/w2- 1)2+6:]1’2 

p w 2 [ ( w : / w 2 -  1y+s:1 p w 2 1 [ ( W : / w 2 - 1 ) 2 + s : ] 1 ’ 2 [ ( w : / w 2 - 1 ) 2 + s : ] 1 ’ 2 ’  

F l k  = 

F2k = 

The first terms in (2.9) and (2.10) are the usual forces of radiative pressure [14-181. 
In the limit k l c  1 (incompressible liquid) the forces (2.7) and (2.8) transform to the 
well known short-range Bjerknes forces [14-161. The radiative forces of the second 
type which depend on the distance I between the particles are long range. It follows 
from (2.9) and (2.10) that the sum of these forces and the forces (2.7) and (2.8) is not 
equal to zero. To our knowledge, this result was first found in [ 11. The sum F, + F2 
is equal to impulse taken away by the scattering sound wave [ l ] .  

3. The radiative interaction of the charges in the electromagnetic wave 

It is interesting to transfer the corresponding results into the problem of the radiative 
interaction of two spinless charged particles in the electromagnetic plane wave E,,, = 
E,, cos( w t  - k r )  and He,, = H,, cos(wt - k r )  where Eo is the amplitude of the electric 
intensity vector, and Ho = [k/k, Eo] is the amplitude of the magnetic intensity vector. 
Let r l 0  and r20 be the position vectors of the mean positions of two particles, and let 
51,2 be their displacements. The position vectors of the current positions are r l  = r l 0 +  Lj1 
and r2 = rzo + . We suppose that 151,21 << 1, A where 1 = rzO - r I o  and A is the wavelength. 

Taking into account the electromagnetic field scattering by neighbouring particles, 
one obtains the following ponderomotive equations: 

miti=ei(Eext(ri3 l )+Er2(ri? t ) ) + ( e i / c ) [ + i ,  Hext(r1, t )+Hr2(r1,  t ) l  

m2iz = e2(Eext(rZ 1 )  + Er, (r2 9 1 ) )  + (e2/ ~ ) [ + 2 ,  Hex,( r z  9 t )  + Hri(r2, r)l 
(3.1) 

(3.2) 
and m1,2 are the charges and masses of the particles, c is the velocity of 

Hr2)  are the electric and magnetic intensity vectors of field 

In order to calculate the scattering fields we use the well known expressions for 

where 
light, and E,, , 
created by dipole oscillations of the first (second) particle. 

the delayed potentials [ 191 

e1.2 
(3.3) E r l . 2  =-- [ & , 2 ( t l , 2 )  - n1,*(n1,* * & , 2 ( t ; , 2 ) ) 1  

c’R1.2 



1496 S T Zavtrak 

where are the propagation distances of radiation and the unit vectors nl,2 give the 
direction of radiation. We shall examine only the long-range limit kl>> 1 because the 
most interesting results are obtained at this limit. The expressions (3 .3)  and (3 .4)  
should to be calculated at delayed moments of the time [ 191 

c , r =  ~ - l r - r 1 , 2 ( f I , 2 ) l / ~ .  (3 .5 )  

The usual Coulomb term is omitted in equation (3 .3 ) .  
With an accuracy to first order in the field amplitude it follows from (3 .1)-(3.5)  that 

m , & , ( t ) =  e,E,cos(wt-k. r 1 0 ) - ~ [ 5 2 ( t - I / c ) - n ( n .  & 2 ( t - 1 / c ) ) ]  (3 .6)  
e ,e2  .. 
c l  

(3 .7)  
el e2 m 2 i 2 (  t )  = e2E0 cos(wt - k rzo) -y [&,( t - l / c )  - n(  n &,( t - l / c ) ) ]  
c l  

where n = 111. 
The solution of this system can be represented as f ,  = tl0+ g2 = Sz0+ 521, where 

e,Eo cos( wt - k rl0)  
m , w 2  & o ( t )  = 

e2E0 cos( wt - k . rzO) 
m2w2 5 2 o ( t )  = - 

e, e: cos( wt - k * rZ0 - k l )  
m, m2w2c21 

e2e: cos(wt - k - rI0 - k l )  
m,m2w2c21 

(E0-  n ( n  E o ) )  

( E  - n ( n  - Eo) ) .  

5 1 1 ( r ) =  

5 2 l ( t )  = 

(3 .9)  

(3.10) 

In order to calculate the radiative forces, let us consider the displacements 5, and 
f 2  as generalised coordinates. Then the position vectors r l0  and rzO are the parameters 
of our system. The interaction Hamiltonian for the interactions of the first particle 
with the electromagnetic field is [19] 

H, = elcpl(r,o+51) 

where cp, and A I  are the resulting scalar and vector potentials (which are the sum of 
the corresponding potentials of the external wave and the wave scattered by the second 
particle). 

The time-averaged force acting on the first particle is [19] (the Coulomb force is 
omitted) 

where 

(3 .12)  

(3.13) 
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The substitution of (3.3) and (3.8)-(3.10) into (3.12) gives 

n ) 2 )  sin( k l +  k * I ) .  e : e : (k+  k n ) (  E:- ( E , .  
F1 = 

2mlm2w2c21 
Analogously 

e:e:(k - kn)( E:- (Eo  * n)')  
2m,m,w2c21 F2 = sin( kl - k - I ) .  

(3.14) 

(3.15) 

These expressions can be represented as F ,  = a Ul/dl and F, = -a U2/dl, where 
e:e:( E : -  ( E ,  - n ) ' )  

' I = -  2m2m202c2~ 
e:e:( E:- (E, * n ) ' )  

2m,m2w2c21 

COS( kl+ k * 1 )  

U,= - cos( kl - k * I ) .  

(3.16) 

(3.17) 

The quantity U ,  (U,) is the energy of the first (second) particle in the field created 
by the second (first) particle. This energy is inversely proportional to the distance 
between the charges, i.e. it behaves like the Coulomb energy, but has an oscillating 
factor. However, for the comparison of the forces, the gradients of the energies are 
important, not the energies themselves. Therefore at large distance the radiative force 
may be dominant over Coulomb force. This leads to the principle possibility of forming 
bound states between even two like charges. The comparison between the radiative 
interaction force and the Coulomb force gives the value of the electric intensity, E,,  
for which these forces are equal, namely Eo= mwce- l lm.  At wavelength h = 1 mu 
and kl = 10 for electrons, one obtains for corresponding energy current W = cE;/4.rr = 
0.23 x lo'* w/cm2. 

Let us compare the radiative force of the interaction with the average force acting 
on the charged particle from the incident electromagnetic wave [ 191 

analogous to the force of radiative pressure [14, 17,181. For particles with approxi- 
mately equal masses and charges, the equations (3.14) and (3.15) result in l F l / l f l -  
(k l ) - '<<  1. If the particles are equal then J =fi and they move together. 

Thus there is some identity between the radiative interaction of charged particles 
under the action of the electromagnetic field and the interaction of the small particles 
in a liquid under the action of sound waves. 

4. The radiative long-range forces between two interacting particles in a classical field 

The Lagrangian of such a system is given by [20] 

where ml,, are the masses of the particles and el.2 are the coupling constants. The 
canonical equations are 

m1,2r1,2 = eI.2Vdrl.2,  t )  
(4.1) 

1 
7 Cp(r, t )  -Acp(r, t )  = e l S ( r  - r l ( t ) ) +  e,S(r - r 2 ( t ) ) .  
C 
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We suppose that the external scalar wave is cp = A cos(wt - k - r ) .  Let rl0 and r20 
be the position vectors of the mean positions of the two particles and be their 
displacements. 

It follows from the expressions (4.1) that the scalar potential created by the dipole 
oscillations of the particle is described by the same equation as the scalar potential of 
the electromagnetic field. Consequently we use the well known expressions for the 
delayed electromagnetic potentials [ 191 

The remainder of the calculation is analogous to those performed previously. 
Therefore we just write the final result for the long-range radiative forces 

e:e:A2( n k ) ’ ( k  + k n )  sin( kl+  k 1 )  -- a U ,  - 
a i  

F, = 
8 v m l  m2w2c21 (4.3) 

e:e:A2( n - k ) 2 ( k  - k n )  sin( kl - k 1 )  a U, 
(4.4) - - -- 

a1 
F2 = 

8xm,m2w2c21 

where 
,2 2 2 e2A ( n - k )’ cos ( kl + k * 1 )  

8xmlm2w2c21 

e:e:A2( n - k)’ cos( kl - k - I )  
8 x m  , mzw 2c21 

U ,  = - 

U,= - 

It can be seen that the structure of the forces (4.3) and (4.4) is analogous to the 
radiative forces (3.14) and (3 .15) .  

5. Conclusions 

If the radiative transfer is carried out by the massless classical field (acoustic, elec- 
tromagnetic, etc) then the induced oscillations of the small particles result in the 
appearance of long-range radiative forces. These forces are of two types: (i)  mutual 
attraction or repulsion of particles; (i i)  transfer and mutual rotation. The time-averaged 
forces are proportional to the square of the field amplitude and inversely proportional 
to the distance between the particles. 
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